Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38465203

RESUMO

Whole-head segmentation from Magnetic Resonance Images (MRI) establishes the foundation for individualized computational models using finite element method (FEM). This foundation paves the path for computer-aided solutions in fields, particularly in non-invasive brain stimulation. Most current automatic head segmentation tools are developed using healthy young adults. Thus, they may neglect the older population that is more prone to age-related structural decline such as brain atrophy. In this work, we present a new deep learning method called GRACE, which stands for General, Rapid, And Comprehensive whole-hEad tissue segmentation. GRACE is trained and validated on a novel dataset that consists of 177 manually corrected MR-derived reference segmentations that have undergone meticulous manual review. Each T1-weighted MRI volume is segmented into 11 tissue types, including white matter, grey matter, eyes, cerebrospinal fluid, air, blood vessel, cancellous bone, cortical bone, skin, fat, and muscle. To the best of our knowledge, this work contains the largest manually corrected dataset to date in terms of number of MRIs and segmented tissues. GRACE outperforms five freely available software tools and a traditional 3D U-Net on a five-tissue segmentation task. On this task, GRACE achieves an average Hausdorff Distance of 0.21, which exceeds the runner-up at an average Hausdorff Distance of 0.36. GRACE can segment a whole-head MRI in about 3 seconds, while the fastest software tool takes about 3 minutes. In summary, GRACE segments a spectrum of tissue types from older adults T1-MRI scans at favorable accuracy and speed. The trained GRACE model is optimized on older adult heads to enable high-precision modeling in age-related brain disorders. To support open science, the GRACE code and trained weights are made available online and open to the research community at https://github.com/lab-smile/GRACE.

2.
Front Hum Neurosci ; 17: 1274114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077189

RESUMO

Background: Person-specific computational models can estimate transcranial direct current stimulation (tDCS) current dose delivered to the brain and predict treatment response. Artificially created electrode models derived from virtual 10-20 EEG measurements are typically included in these models as current injection and removal sites. The present study directly compares current flow models generated via artificially placed electrodes ("artificial" electrode models) against those generated using real electrodes acquired from structural MRI scans ("real" electrode models) of older adults. Methods: A total of 16 individualized head models were derived from cognitively healthy older adults (mean age = 71.8 years) who participated in an in-scanner tDCS study with an F3-F4 montage. Visible tDCS electrodes captured within the MRI scans were segmented to create the "real" electrode model. In contrast, the "artificial" electrodes were generated in ROAST. Percentage differences in current density were computed in selected regions of interest (ROIs) as examples of stimulation targets within an F3-F4 montage. Main results: We found significant inverse correlations (p < 0.001) between median current density values and brain atrophy in both electrode pipelines with slightly larger correlations found in the artificial pipeline. The percent difference (PD) of the electrode distances between the two models predicted the median current density values computed in the ROIs, gray, and white matter, with significant correlation between electrode distance PDs and current density. The correlation between PD of the contact areas and the computed median current densities in the brain was found to be non-significant. Conclusions: This study demonstrates potential discrepancies in generated current density models using real versus artificial electrode placement when applying tDCS to an older adult cohort. Our findings strongly suggest that future tDCS clinical work should consider closely monitoring and rigorously documenting electrode location during stimulation to model tDCS montages as closely as possible to actual placement. Detailed physical electrode location data may provide more precise information and thus produce more robust tDCS modeling results.

4.
Brain Stimul ; 14(5): 1205-1215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34371212

RESUMO

BACKGROUND: Working memory decline has been associated with normal aging. The frontal brain structure responsible for this decline is primarily located in the prefrontal cortex (PFC). Our previous neuroimaging study demonstrated a significant change in functional connectivity between the left dorsolateral PFC (DLPFC) and left ventrolateral PFC (VLPFC) when applying 2 mA tDCS in MRI scanner during an N-Back task. These regions were part of the working memory network. The present study is the first study that utilizes individualized finite element models derived from older adults' MRI to predict significant changes of functional connectivity observed from an acute tDCS application. METHODS: Individualized head models from 15 healthy older adults (mean age = 71.3 years) were constructed to create current density maps. Each head model was segmented into 11 tissue types: white matter, gray matter, CSF, muscle, blood vessels, fat, eyes, air, skin, cancellous, and cortical bone. Electrodes were segmented from T1-weighted images and added to the models. Computed median and maximum current density values in the left DLPFC and left VLPFC regions of interest (ROIs) were correlated with beta values as functional connectivity metrics measured in different timepoint (baseline, during stimulation) and stimulation condition (active and sham). MAIN RESULTS: Positive significant correlations (R2 = 0.523 for max J, R2 = 0.367 for median J, p < 0.05) were found between the beta values and computed current densities in the left DLPFC ROIs for active stimulation, but no significant correlation was found during sham stimulation. We found no significant correlation between connectivity and current densities computed in the left VLPFC for both active and sham stimulation. CONCLUSIONS: The amount of current within the left DLPFC ROIs was found positively correlated with changes in functional connectivity between left DLPFC and left VLPFC during active 2 mA stimulation. Future work may include expansion of number of participants to further test the accuracy of tDCS models used to predict tDCS-induced functional connectivity changes within the working memory network.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Idoso , Envelhecimento , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Córtex Pré-Frontal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...